|
今天的函数还是接昨天的讲解。昨天讲了利息,今天将本金和利息情况一并讲解。这样会让读者更清楚,分析问题更透彻。实例也更加贴近每个人的生活。
说到房奴,主要是给银行打工,但人家毕竟借给了我们那么多的钱,也不能白白地借给你吧。很多人在选择还款时采用等额偿还的方式,什么是等额偿还呢?
等额本息还款法,即把按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中,每个月的还款额是固定的,但每月还款额中的本金比重逐月递增、利息比重逐月递减。其特点是借款人每月按相等的金额偿还贷款本息,其中每月贷款利息按月初剩余贷款本金计算并逐月结清。由于每月的还款额相等,因此,在贷款初期每月的还款中,剔除按月结清的利息后,所还的贷款本金就较少;在贷款末期每月的还款中,剔除按月结清的利息后,所还的贷款本金就较多。这种还款方式,实际占用银行贷款的数量更多、占用的时间更长,同时它还便于借款人合理安排每月的生活和进行理财(如以租养房等)。
按上面的讲解,每月还贷时本金和利息是不同的,利息的金额在上面的文章中讲了,那么本金呢?今日我们讲解,首先我们先引入的是PPMT函数。
PPMT函数是基于固定利率及等额分期付款方式,返回投资在某一给定期间内的本金偿还额。语法PPMT(rate,per,nper,pv,fv,type)
参数:
1 Rate 为各期利率。
2 Per 用于计算其本金数额的期数,必须介于 1 到 nper 之间。
3 Nper 为总投资期,即该项投资的付款期总数。
4 Pv 为现值,即从该项投资开始计算时已经入帐的款项,或一系列未来付款当前值的累积和,也称为本金。
5 Fv 为未来值,或在最后一次付款后希望得到的现金余额,如果省略 fv,则假设其值为零,也就是一笔贷款的未来值为零。
6 Type 数字 0 或 1,用以指定各期的付款时间是在期初还是期末。Type 值支付时间0 或省略期末1 期初
实例讲解:
例如计算偿还的本息,某公司从银行贷款90000元,年利率为4.16%,还款期为11年,条件是等额偿还,按月还款,请计算付款中的本金和利息。
这个例子和上篇文章的例子类似,只不过昨天的例子只是讲了利息,今天把本金的偿还也做了说明:我们看下面的截图:
我们只是列出来第一年和最后一年的利息和本金情况,利息的公式就不再多说了,本金的公式:C6中的公式:=PPMT($D$3/12,A6,$C$3*12,$B$3,0)其中$D$3/12 是指月利率;A6是指哪期还款;$C$3*12是指总的还款期数;$B$3是指总的金额。
看下面的返回结果:
利用PPMT函数和IPMT函数,让你的房贷明明白白
一共是132期的明细,如果读者要自己计算每期的还款金额,只需要把期数补全即可,为了大家不再去上篇文章中找公式:把B6的公式再次提供给大家:=IPMT($D$3/12,A6,$C$3*12,$B$3)
细心的读者还会发现由于是等额还款,每月还款的总金额是一定的。 |
|